

HPE AI : Strategy and Portfolio

HPC&AI Center of Excellence (CoE)

March, 2023

Christophe Menichetti Al solutions Architect Christophe.menichetti@hpe.com

WORKSHOP: AGENDA

AI BASICS

INTRO: VOCABULARY AND HISTORY

FOUNDATION MODELS:

FOUNDATION MODELS ARE LARGE AI GENERALIZED MODELS CAPABLE OF A

ML/DL: INTRODUCTION TO THE BASICS

Real Estate agency willing to automate (software) house's price estimation

The business purpose is simple : estimate the right (most profitable) price

But the business rules / logic is complex, depending on many parameters

Name	Surface	Rooms	Pool	Price	
House1	2,000	4	0	270,000	
House5	3,500	6	1	510,000	
House12	1,500	4	0	240,000	

ML/DL BEHIND THE COVER : ALL ABOUT MATHS

Machine Learning =

- 1) Data (and Data Analysis)
- 2) Mathematics
- 3) Prediction

Name	Surface	Rooms	Pool	Price
House1	2,000	4	0	270,000
House5	3,500	6	1	510,000
House12	1,500	4	0	240,000

Features (attributes) x1,x2,x3

Label (target) = Y

Many functions (*predictive models*) could apply on those data to make a prediction (more or less accurate) – without hard coding the business rule (*without explicitly programmed*)

Linear Model ax+ b Parameters are called W (weights) and B (biases)

polynomial model: ax² + bx + c

ML/DL BEHIND THE COVER : ALL ABOUT MATHS

Name	Surface	Rooms	Pool	Price
House1	2,000	4	0	270,000
House5	3,500	6	1	510,000
House12	1,500	4	0	240,000

Algorithm Mathematical function Algorithm Result = weight1*param1 + weight2*param2 + weight0

> Algorithm with Price in \$US = 100*(square_feet) + 10000*(bedrooms) + 100,000 weighted parameters

Consider an example first pass. Record 1 is a house of 1500 square feet with three bedrooms. The training process submits that data to the untrained model, which might be:

Price in \$US = 100*(area in square feet) + 10,000*(bedrooms) + 100,000

Model

The output is \$280,000.

Model

Because you are using supervised training, the record included a label: \$314,000. The training process assesses the difference between the output label and the original label. It then adjusts the model weights in an attempt to do better. It might decide to weigh area and bedrooms more heavily and to increase the bias—as just one example:

Price in \$US = 110*(area in square feet) + 11,000*(bedrooms) + 110,000

After adjusting the model, the training process conducts a second pass on a *new* record. Again, it assesses the result and its difference from the accurate label. It makes a further adjustment to the model weights.

The process continues for pass after pass until the model has been trained on the desired amount of data. The model is now considered "trained," and it should be performing very well.

The goal of machine learning is to define and minimize the error (**the cost function**) – so in other word, maximize the accuracy of the predictive model

We have to define the error function and how to minise the error (algo = optimiser)

ML/DL SECRET SAUCE : TRAINING - OPTIMISER AND LEARNING RATE

BATCH 1
BATCH 2
BATCH

EPOCH (iteration over training dataset)

10 000 **RECORDS**

Calculate the error

Assess loss

Correcting weights (parameter) to decrease error using optimiser (gradient descent for instance)

Correcting after training over the full data set (epoch) or after piece of data (batches)

Alpha = learning rate A(n) = A(n=1) = alpha x d(Error)/dA

DIFFERENT DATASET FROM HISTORICAL DATABASE

dataset that is independent of the training to test generalisation

Test

Training

Validation

algorithm learns relationships between the **features** and the **target** variable.

dataset of examples used to **tune the hyperparameters** of a model (dev set)

You can analytically solve the solution of finding the minimum of Error function but it could be time consuming.

The idea is to use a fastest way (iterative algorithm) to solve it : **gradient descent** (derivative with respect to parameters and bias)

It is basically iteratively updating the values of **a** and **b** using the value of gradient, as in this **equation (*)**

ML/DL DOUBLE SAUCE : HYPERPARAMETERS

HP are defined as the parameters that are explicitly defined by the user to control the learning process

Hyperparameters are **parameters whose values control the learning process** and determine the values of model parameters

The prefix 'hyper_' suggests that they are **'top-level' parameters** that control the learning process and the model parameters that result from it.

(MODEL) PARAMETER ?

Model parameters are configuration variables that are internal to the model, and a model learns them on its own. These are usually not set manually

HYPERPARAMETER?

Hyperparameters are those parameters that are explicitly (manually or thru HPO) defined by the user to control the learning process

DEEP LEARNING : ZOOM

Artificial Neuron = first application = logic gate

Then, **Perceptron** = algorithm that could learn the weights in order to generate an output.

(For classification for image perception)

Artificial Neuron Network (ANN)

MLP (**Multi Layer Perceptron**) is one kind of neural networks, where the activation function is sigmoid, and error term is cross-entropy(logistics) error

MLP is one of the several kinds of **Artificial Neuron Networks** (ANN)

MLP is fully connected Feed Forward (FF) network but you can find CNN, RNN, ...

DNN: DIFFERENT ARCHITECTURES FOR DIFFERENT NEEDS

There are many types of AI or deep learning models. For natural language processing (NLP) we will turn to language models : RNN, Encoders, Transformers

DNN (FFN) : FOR TABULAR DATA

Input Layer 1 Layer 2 Layer 3 Output

CNN : FOR IMAGES / VIDEOS

RNN : FOR TIME SERIES AND TEXT

LANGUAGE MODEL / LARGE LANGUAGE MODEL (LLM)

If it's predicting the next word in the sequence, it's called **next-token-prediction**; if it's predicting a missing word in the sequence, it's called **masked language modeling**.

NLP: WHAT IS NLP ? BASICS

DEFINITION

" NLP strives to build machines that **understand** and respond to text or voice data – and respond with text or speech of their own – in much time the same way humans do" (by IBM)

USE CASES	
NLG : Natural Language Generation	
NLU : Natural Language Understanding	

Information retrieval	query (+corpus)	→ document
Information extraction	query (+corpus)	→ fact (tuple)
Machine translation Speech recognition	source text sounds	 → translation → words
Question answering Summarization Conversational agents	question text prompt	 → answer → summary → response (a

TRANSFORMER: ATTENTION IS ALL YOU NEED

HUMANS : Reading and capabilities to understand concepts and the world around us are all about: MEMORY and ATTENTION

The encoder is responsible for analyzing and "understanding" the input text and the decoder is responsible for generating output

LLM CHATGPT

GPT 3 training on :

- 570 GB of data from books, wikipedia, research articles, webtexts, websites ~ 300 billion words were fed into the system / 800 GB of memory to train it
- 175B of parameters , 2048 tokens as input
- 96 decoder layers
- Training hardware: Access to a supercomputer with ~10,000 GPUs and ~285,000 CPU cores.

ALPEH ALPHA: LUMINOUS, EUROPEAN CHATGPT

Submit

Reset

Copywriting

You are in need of some marketing material? Briefly describe your product or service in the text field below. Luminous will then create an advertising slogan from the information provided!

Text:

Olympique de Marseille also known simply as Marseille or by the abbreviation OM is a French professional men's club based in <u>Marseille.Founded</u> in 1899, the club plays in Ligue 1 and have spent most of their history in the top tier of French football. The club has won ten Ligue 1 titles, ten Coupes de France and three Coupes de la Ligue. In 1993, coach Raymond Goethals led the team to become the first and only French club to win the UEFA Champions League, defeating Milan 1–0 in the final, the first under the UEFA Champions League branding of the tournament.

Slogan:

We're not just the best team in France, we're the best team in Europe. #om

View Settings Open in Playground

Structuring information is usually a tedious task. That's why Luminous can do it for you. Just enter any text and we will create a table.

Text:

Marsellie's home ground is the 67,394-capacity Stade <u>Vélodrome</u> in the southern part of the city, where they have played since 1937. The club has a large fan-base, having regularly averaged the highest attendance in French football. Marsellie's average home gate for the 2018-19 season was 50,361, the highest in Ligue 1. The stadium underwent renovation from 2011 to 2014, increasing its capacity to 67,000 ahead of France's hosting of UEFA Euro 2016. In 2015, the club was ranked 23rd globally in terms of annual revenue, generating €130.5 million.

Table:

| Home ground | Capacity | Attendance | Revenue | | Stade Vélodrome | 67,394 | 50,361 | €130.5 million | | Stade Velodrome | 67,394 | 50,361 | €130.5 million |

View Settings Open in Playground

Tasks	Sample Prompts
Sentiment Analysis	What is the sentiment of the following text: "I love this product."
Named Entity Recognition	Who is the author of "To Kill a Mockingbird"?
Text Similarity	Which is more similar: "dog" or "cat"?
Text-to-Speech	Can you convert the following text to speech: "Hello, world."
Speech-to-Text	Can you transcribe the following audio clip: "Hello, world."
Image Captioning	Generate a caption for this image of a sunset over a beach.

Reset

Submit

Tasks	Sample Proi pts		
Image Classification	What type of animal is in this picture?		
Text-to-Code	Generate code for a program that prints "Hello, world." in Python.		
Code Generation	Generate a function in Python that calculates the factorial of a number.		
Chatbot	Can you serve as a customer support agent and answer my questions?		
Poem Generation	Generate a poem about love.		
Song Lyrics Generation	Generate the lyrics for a sad love song.		

ML/DL POINT : CHANGING PARADIGM

Difference traditional programming vs AI

From deterministic programming to probabilistic programming

ML/DL : WHAT IS DEEP LEARNING ?

Task: predict house prices based on school rating (s), # of bedrooms (be), # of bathrooms (ba), ft² (f)

Rule-based AI

SME defines a set of rules, these rules are explicitly programmed:

```
if (s==9 and be==2
    and ba==2 and f==1000)
then
    price = $1000000;
```

else if (...) then ... else if (...) then ...

Machine Learning

Collect a "labeled dataset": example of houses with prices

```
House 1: s = 9, be = 2,
ba = 2, f = 1000,
price = $1000000
House 1: s = 4, be = 2,
ba = 1, f = 700,
price = $600000
```

Define a function (model):
F: (s,be,ba,f) -> price
price = F(s,be,ba,f) =
w1*s + w2*be + w3*ba + w4*f

Train a model: run a program to find the best values of w1, w2, w3, w4

Deep Learning

As traditional ML, but a function is more complex – a function of functions

F: (s,be,ba,f) -> price
price = F(s,be,ba,f) =
f3(f2(f1(s,be,ba,f)))

AI CLIENTS AND CHALLENGES

ML/DL CHALLENGES : DATA SCIENCE IS A TEAM WORK

IT TEAM / INFRASTRUCTURE

Data Architect

Create blueprint for Data management Systems Define, Integrate and maintain data sources/flow

Project Managers Team Leaders

Executive Managers Business Sponsors

ML/DL CHALLENGES : MANY TOOLS / PRODUCTION / BUSINESS

CUSTOMER AI JOURNEY

HPE AI NEXT : HPC&AI

AI at scale Challenges

24

Al at scale market requires new software platform

Emerging Al Mega Trends	Difficult Ecosystem Choices	Few Successful Implementers	Market Requirements
Growing Data Volumes	DIY using hundreds of point solutions – most without commercial support	Big Tech Companies 🗸 🗸 (e.g., Alphabet, Meta)	Edge-to-cloud AI lifecycle software based on open technologies and built for scale
New Al algorithms Accelerated Compute	or Adopt CSP or accelerator- vendor provided technologies that create lock-in	Al Native Companies (e.g., Open Al, Cruise, Aleph Alpha)	End-to-end capabilities: - Data Acquisition & Preparation - Development & Training - Deployment & Inference - Governance & Performance Management
		Majority of companies 🛛 🗙	Common user experience with deployments from edge to cloud
			Optimized performance across heterogenous compute

AI-at-Scale Platform

Industry-Specific Workload SolutionsCurated solutions, training & inference-related platforms, and reference configurations for key industry workloadsManufacturingFinancial Services & InsuranceHealth Care & Life SciencesGovernment					
Al Data Management at Scale	Al Development Sca	t & Training at le	AI Deploy	/ment & Inference at Scale	
Manage and data lineage features, augmentation ar pipelines in a high performa distributed fashion	, Train large-scale m d models faster wh nce, complexity of heterogeneous	nachine learning hile hiding the underlying infrastructure	Deploy & I inferen infrastruct	manage models and run ce on heterogeneous ture from data center to edge	

Choice of optimal infrastructure for any at Scale AI workload

Al Compute

Al Storage

AI High-Performance Fabric

AI Accelerators

Across On-Premises, Private Cloud and Public Cloud

HPE ML DEVELOPMENT ENVIRONMENT

DETERMINED AI TRAINING PLATFORM

HPE MACHINE LEARNING DEVELOPMENT ENVIRONMENT AND DETERMINED OPEN SOURCE—COMPARED

	Open source Determined Software	HPE Machine Learning Development Environment
Distributed training	\checkmark	\checkmark
Model optimization	\checkmark	\checkmark
Metadata tracking	\checkmark	\checkmark
Cluster resource management	\checkmark	\checkmark
GPU cost management	\checkmark	\checkmark
Collaboration and experiment tracking	\checkmark	\checkmark
Security		
Single sign on (SSO)	X	\checkmark
Automated user provisioning	X	
Premium dedicated support	X	

HPE SWARM LEARNING

SWARM LEARNING INTRODUCTION: CONTEXT

A machine learning model is only as good as the (regional) data it is fed

Centralized

Good accuracy BUT

LOW EFFICENCY : Multiple sites send raw data over the network; need high bandwidth

Lack of DATA PRIVACY: Privacy acts like GDPR prevent moving data to a central repository

LACK OF COLLABORATION: Data generated in silos (e.g. data centers, sensors, vehicles)

LACK OF MONETIZATION: Data is new currency – owners look for ways to monetize the data

SWARM LEARNING INTRODUCTION: SOLUTION?

Federated Learning solves privacy issues But it still need a central custodian for coordination and merging the local learnings

- Ownership of the data remains local
- Data protection and data security solved locally
- Collaborative learning makes model less susceptible to bias

Swarm Learning

Democratic Machine Learning

AI ON THE EDGE: MACHINE LEARNING JOURNEY

Swarm Learning enables privacy-preserving, secure and collaborative machine learning by treating all participants equally

SL INTERNALS: HIGH LEVEL PRINCIPLE

0. On boarding (done offiline)

1. Register

Nodes register to Swarm Network and receive ML model

2. Train

Nodes train the model on local data for a time-window (epoch)

3. Merge

Nodes share and merge the trained models

4. Repeat

Repeat 1 & 2 till desired accuracy is achieved

PACHYDERM

KEY ASPECTS OF MLDM

Introduction to Machine Learning Data Management (aka Pachyderm)

Data Versioning

Manage data with the same production practices as code

Data Pipelines

Developers need to be empowered with choice, not restricted

Data Lineage

Be able to instantly reconstruct any past output/decision

OSS VS. ENTERPRISE

	COMMUNITY EDITION For small teams who prefer to build and support their own software.	Enterprise Edition Organizations that require advanced features and unlimited potential.
Console	~	~
Notebook Support	~	~
Immutable Data Lineage	~	~
Native Data Version Control	~	~
Deduplication	~	~
Data-Driven Pipelines	16	Unlimited
Parallel Processing (Parallel Workers)	8	Unlimited
Role Based Access Controls (RBAC)	-	~
Pluggable Auth – Login with your IdP	-	~
Enterprise Support	-	~

Hewlett Packard Enterprise

THANK YOU

TALA TER CEPTING AND PROVIDENT